在现代数字时代,个性化建议对于增强用户互动至关重要。例如,音乐流媒体应用程序利用您的听歌习惯来推荐与您的口味、流派或心情相符的新歌曲。然而,这些系统是如何决定哪些歌曲最适合您的呢? <img src="../../assets/cosine-similarity-vs-euclidean-distance/transfo ...


在现代数字时代,个性化建议对于增强用户互动至关重要。例如,音乐流媒体应用程序利用您的听歌习惯来推荐与您的口味、流派或心情相符的新歌曲。然而,这些系统是如何决定哪些歌曲最适合您的呢? <img src="../../assets/cosine-similarity-vs-euclidean-distance/transfo ...
在我们之前对对比学习的探索中,我们揭示了模型如何通过在嵌入空间中将相似的数据聚集在一起并将不相似的数据推开来学习区分相似和不相似数据。我们讨论了一些方法,如[SimCLR](https://myscale.com/blog/zh/what-is-contrastive-lear ...
传统上,机器学习(ML)可以广泛分为两种类型:有监督学习和无监督学习。在 ...
Testin成立于2011年,是一家企业服务平台,提供两项主要服务:为开发人员提供的云测试服务,已为超过80万名开发人员提供服务,并为200万个应用程序执行了超过1.5亿次测试;以及机器学习(ML)模型训练服务,包括数据标注和模型部署等服务,涉及安全、物联网(IoT) ...